Effect of lattice distortion in high-entropy RE2Si2O7 and RE2SiO5 (RE=Ho, Er, Y, Yb, and Sc) on their thermal conductivity: Experimental and molecular dynamic simulation study | |
Liu, Xiangyang1; Zhang, Peng1; Huang, Muzhang1; Han, Yi1; Xu, Na2; Li, Yi1,3; Zhang, Zijian1; Pan, Wei1; Wan, Chunlei1 | |
通讯作者 | Xu, Na(naxu@imr.ac.cn) ; Wan, Chunlei(wancl@mail.tsinghua.edu.cn) |
2023-11-01 | |
发表期刊 | JOURNAL OF THE EUROPEAN CERAMIC SOCIETY
![]() |
ISSN | 0955-2219 |
卷号 | 43期号:14页码:6407-6415 |
摘要 | High-entropy materials are considered to be born with lattice distortion, which is still lack of comprehensive investigation in rare earth silicates to date. In this paper, we confirmed the existence of lattice distortions in highentropy rare-earth silicates via experiments and molecular dynamic simulations. The effects of the lattice distortion on the thermophysical properties are elucidated. Simulation results indicate the lattice distortion is present in both cation and anion sublattice, leading to the compressing and stretching of atomic bond as well as fluctuation of atomic bond strength. Accordingly, lattice distortion in the Si and O sublattice is also verified by the Raman spectra. Furthermore, the thermal conductivity of high-entropy rare earth silicates remarkably reduces and exhibits glass-like behavior, which is confirmed by experiments in cooperation with molecular dynamic simulations. Simulation also reveals that the lifetimes and group velocities of vibrational modes are significantly reduced by lattice distortion, which result in the reduction of overall thermal conductivity of highentropy rare-earth silicates. |
关键词 | High-entropy Rare earth silicates Lattice distortion Thermal conductivity Atomistic simulation |
资助者 | National Key R amp; D Program of China ; National Natural Science Foundation of China ; National Science and Technology Major Project |
DOI | 10.1016/j.jeurceramsoc.2023.06.052 |
收录类别 | SCI |
语种 | 英语 |
资助项目 | National Key R amp; D Program of China[2021YFB3702300] ; National Natural Science Foundation of China[52022042] ; National Science and Technology Major Project[J2019-VII-0008-0148] |
WOS研究方向 | Materials Science |
WOS类目 | Materials Science, Ceramics |
WOS记录号 | WOS:001043682800001 |
出版者 | ELSEVIER SCI LTD |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://ir.imr.ac.cn/handle/321006/178820 |
专题 | 中国科学院金属研究所 |
通讯作者 | Xu, Na; Wan, Chunlei |
作者单位 | 1.Tsinghua Univ, Sch Mat, State Key Lab New Ceram & Fine Proc, Sci & Engn, Beijing 100084, Peoples R China 2.Chinese Acad Sci, Inst Met Res, Shi Changxu Innovat Ctr Adv Mat, Wenhua Rd 72, Shenyang 110016, Peoples R China 3.Beijing Univ Chem Technol, Coll Math & Phys, Beijing 100029, Peoples R China |
推荐引用方式 GB/T 7714 | Liu, Xiangyang,Zhang, Peng,Huang, Muzhang,et al. Effect of lattice distortion in high-entropy RE2Si2O7 and RE2SiO5 (RE=Ho, Er, Y, Yb, and Sc) on their thermal conductivity: Experimental and molecular dynamic simulation study[J]. JOURNAL OF THE EUROPEAN CERAMIC SOCIETY,2023,43(14):6407-6415. |
APA | Liu, Xiangyang.,Zhang, Peng.,Huang, Muzhang.,Han, Yi.,Xu, Na.,...&Wan, Chunlei.(2023).Effect of lattice distortion in high-entropy RE2Si2O7 and RE2SiO5 (RE=Ho, Er, Y, Yb, and Sc) on their thermal conductivity: Experimental and molecular dynamic simulation study.JOURNAL OF THE EUROPEAN CERAMIC SOCIETY,43(14),6407-6415. |
MLA | Liu, Xiangyang,et al."Effect of lattice distortion in high-entropy RE2Si2O7 and RE2SiO5 (RE=Ho, Er, Y, Yb, and Sc) on their thermal conductivity: Experimental and molecular dynamic simulation study".JOURNAL OF THE EUROPEAN CERAMIC SOCIETY 43.14(2023):6407-6415. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论