IMR OpenIR
Achieving high fatigue endurance of nanocrystalline Ni/Ni-W layered composites through thermally and mechanically-induced relaxations
Li, Mei-Yue1,2; Wang, Zhe-Xuan3; Zhang, Bin3; Wen, Ming4; Luo, Xue-Mei1; Chen, Hong -Lei1; Zhang, Guang-Ping1
通讯作者Zhang, Bin(zhangb@atm.neu.edu.cn) ; Zhang, Guang-Ping(gpzhang@imr.ac.cn)
2024-09-01
发表期刊ACTA MATERIALIA
ISSN1359-6454
卷号276页码:14
摘要Stabilizing non-equilibrium nanograin boundaries has been shown to enhance the strength of nanocrystalline metals. Nevertheless, a thorough comprehension of how these stable grain boundaries impact the fatigue behavior in nanocrystalline metallic layered composites with heterogeneous interfaces is currently lacking. Here, aiming to develop high-performance small components in microelectromechanical systems, we prepared nanocrystalline Ni/Ni-W layered composites that underwent various degrees of annealing treatment. Our results reveal that the Ni/Ni-W layered composites annealed at 200 degrees C exhibit significantly higher fatigue strength, surpassing that of the as-prepared composites by 40 % and the Pt-10 at.% Au alloy by 17 % which is one of the best candidates for the microelectromechanical systems switches at present. The enhanced fatigue strength is primarily attributed to the annealing-induced grain boundary relaxation and mechanically-induced structural relaxation. Grain boundary relaxation enhances the strength by improving GB stability, while the mechanicallyinduced structural relaxation results in the coarsening and expansion of triangular columnar grains towards the Ni-W layer during fatigue loading. As a result, the dispersive strain localized regions triggered by the triangular columnar grains undertook cyclic strain accumulation and weakened localized damage accumulation in Ni layers, and thus further improved the fatigue resistance. The finding of the underlying mechanisms may offer a promising approach for designing high-performance materials for microelectromechanical systems switches operating at elevated temperatures.
关键词Layered composite Fatigue Nanocrystalline Twin Strain localization
资助者Strategic Priority Research Program of Chinese Academy of Sciences ; National Natural Science Foundation of China (NSFC) ; Yunnan Province Expert Workstation Project
DOI10.1016/j.actamat.2024.120091
收录类别SCI
语种英语
资助项目Strategic Priority Research Program of Chinese Academy of Sciences[XDB0510303] ; National Natural Science Foundation of China (NSFC)[51971060] ; Yunnan Province Expert Workstation Project[202305AF150171]
WOS研究方向Materials Science ; Metallurgy & Metallurgical Engineering
WOS类目Materials Science, Multidisciplinary ; Metallurgy & Metallurgical Engineering
WOS记录号WOS:001259085600001
出版者PERGAMON-ELSEVIER SCIENCE LTD
引用统计
文献类型期刊论文
条目标识符http://ir.imr.ac.cn/handle/321006/187722
专题中国科学院金属研究所
通讯作者Zhang, Bin; Zhang, Guang-Ping
作者单位1.Chinese Acad Sci, Inst Met Res, Shenyang Natl Lab Mat Sci, 72 Wenhua Rd, Shenyang 110016, Peoples R China
2.Univ Sci & Technol China, Sch Mat Sci & Engn, Shenyang 110016, Peoples R China
3.Northeastern Univ, Sch Mat Sci & Engn, Key Lab Anisotropy & Texture Mat, Minist Educ, 3-11 Wenhua Rd, Shenyang 110819, Peoples R China
4.Sino Platinum Met Co Ltd, 988 Keji Rd, Kunming 650106, Peoples R China
推荐引用方式
GB/T 7714
Li, Mei-Yue,Wang, Zhe-Xuan,Zhang, Bin,et al. Achieving high fatigue endurance of nanocrystalline Ni/Ni-W layered composites through thermally and mechanically-induced relaxations[J]. ACTA MATERIALIA,2024,276:14.
APA Li, Mei-Yue.,Wang, Zhe-Xuan.,Zhang, Bin.,Wen, Ming.,Luo, Xue-Mei.,...&Zhang, Guang-Ping.(2024).Achieving high fatigue endurance of nanocrystalline Ni/Ni-W layered composites through thermally and mechanically-induced relaxations.ACTA MATERIALIA,276,14.
MLA Li, Mei-Yue,et al."Achieving high fatigue endurance of nanocrystalline Ni/Ni-W layered composites through thermally and mechanically-induced relaxations".ACTA MATERIALIA 276(2024):14.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Li, Mei-Yue]的文章
[Wang, Zhe-Xuan]的文章
[Zhang, Bin]的文章
百度学术
百度学术中相似的文章
[Li, Mei-Yue]的文章
[Wang, Zhe-Xuan]的文章
[Zhang, Bin]的文章
必应学术
必应学术中相似的文章
[Li, Mei-Yue]的文章
[Wang, Zhe-Xuan]的文章
[Zhang, Bin]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。