High fatigue resistance in a titanium alloy via near-void-free 3D printing | |
Qu, Zhan1,2; Zhang, Zhenjun1,2; Liu, Rui1; Xu, Ling3; Zhang, Yining1; Li, Xiaotao1; Zhao, Zhenkai1; Duan, Qiqiang1; Wang, Shaogang1; Li, Shujun1; Ma, Yingjie1; Shao, Xiaohong1; Yang, Rui1,2,4; Eckert, Juergen5,6; Ritchie, Robert O.7; Zhang, Zhefeng1,2 | |
通讯作者 | Zhang, Zhenjun(zjzhang@imr.ac.cn) ; Ritchie, Robert O.(roritchie@lbl.gov) ; Zhang, Zhefeng(zhfzhang@imr.ac.cn) |
2024-02-29 | |
发表期刊 | NATURE
![]() |
ISSN | 0028-0836 |
卷号 | 626期号:8001页码:13 |
摘要 | The advantage of 3D printing-that is, additive manufacturing (AM) of structural materials-has been severely compromised by their disappointing fatigue properties1,2. Commonly, poor fatigue properties appear to result from the presence of microvoids induced by current printing process procedures3,4. Accordingly, the question that we pose is whether the elimination of such microvoids can provide a feasible solution for marked enhancement of the fatigue resistance of void-free AM (Net-AM) alloys. Here we successfully rebuild an approximate void-free AM microstructure in Ti-6Al-4V titanium alloy by development of a Net-AM processing technique through an understanding of the asynchronism of phase transformation and grain growth. We identify the fatigue resistance of such AM microstructures and show that they lead to a high fatigue limit of around 1 GPa, exceeding the fatigue resistance of all AM and forged titanium alloys as well as that of other metallic materials. We confirm the high fatigue resistance of Net-AM microstructures and the potential advantages of AM processing in the production of structural components with maximum fatigue strength, which is beneficial for further application of AM technologies in engineering fields. We successfully rebuild an approximate void-free additive manufacturing microstructure in Ti-6Al-4V titanium alloy by the development of a void-free additive manufacturing processing technique through an understanding of the asynchronism of phase transformation and grain growth. |
资助者 | National Natural Science Foundation of China ; Youth Innovation Promotion Association (CAS) ; National Key R&D Program of China ; KC Wong Education Foundation ; International Joint Research Project of CAS ; IMR Innovation Fund ; Liaoning 'Unveiling and Commanding' Science and Technology Plan ; Shi Changxu Innovation Center for Advanced Materials |
DOI | 10.1038/s41586-024-07048-1 |
收录类别 | SCI |
语种 | 英语 |
资助项目 | National Natural Science Foundation of China[52322105] ; National Natural Science Foundation of China[52321001] ; National Natural Science Foundation of China[U2241245] ; National Natural Science Foundation of China[52130002] ; National Natural Science Foundation of China[52261135634] ; National Natural Science Foundation of China[52371084] ; Youth Innovation Promotion Association (CAS)[2021192] ; National Key R&D Program of China[2023YFB4606604] ; National Key R&D Program of China[2020YFA0710404] ; KC Wong Education Foundation[GJTD-2020-09] ; International Joint Research Project of CAS[172GJHZ2022030MI] ; IMR Innovation Fund[2023-ZD01] ; Liaoning 'Unveiling and Commanding' Science and Technology Plan[2022-37] ; Shi Changxu Innovation Center for Advanced Materials |
WOS研究方向 | Science & Technology - Other Topics |
WOS类目 | Multidisciplinary Sciences |
WOS记录号 | WOS:001183983000008 |
出版者 | NATURE PORTFOLIO |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://ir.imr.ac.cn/handle/321006/184659 |
专题 | 中国科学院金属研究所 |
通讯作者 | Zhang, Zhenjun; Ritchie, Robert O.; Zhang, Zhefeng |
作者单位 | 1.Chinese Acad Sci, Inst Met Res, Shenyang Natl Lab Mat Sci, Shenyang, Peoples R China 2.Univ Sci & Technol China, Sch Mat Sci & Engn, Shenyang, Peoples R China 3.Shenyang Inst Engn, Shenyang, Peoples R China 4.Shanghai Tech Univ, Ctr Adapt Syst Engn, Sch Creat & Art, Shanghai, Peoples R China 5.Austrian Acad Sci, Erich Schmid Inst Mat Sci, Leoben, Austria 6.Univ Leoben, Dept Mat Sci, Leoben, Austria 7.Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA |
推荐引用方式 GB/T 7714 | Qu, Zhan,Zhang, Zhenjun,Liu, Rui,et al. High fatigue resistance in a titanium alloy via near-void-free 3D printing[J]. NATURE,2024,626(8001):13. |
APA | Qu, Zhan.,Zhang, Zhenjun.,Liu, Rui.,Xu, Ling.,Zhang, Yining.,...&Zhang, Zhefeng.(2024).High fatigue resistance in a titanium alloy via near-void-free 3D printing.NATURE,626(8001),13. |
MLA | Qu, Zhan,et al."High fatigue resistance in a titanium alloy via near-void-free 3D printing".NATURE 626.8001(2024):13. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论