Strategy and mechanism to improve the fatigue properties of Ti6Al4V ELI alloy by microstructure modulation combined with surface strengthening process | |
Sun, Pengfei1,2; Qu, Shengguan1,2; Duan, Chenfeng1,2; Zhong, Hao1,2; Li, Fenglei1,2; Liang, Liang1,2; Li, Xiaoqiang1,2; Zhang, Zhefeng3 | |
通讯作者 | Qu, Shengguan(qusg@scut.edu.cn) |
2024-02-01 | |
发表期刊 | MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING
![]() |
ISSN | 0921-5093 |
卷号 | 892页码:15 |
摘要 | The hot isostatic pressing (HIP) technique allows obtaining powder metallurgy Ti6Al4V parts with high densities, but its microstructure is not ideal, resulting in a lower fatigue life than expected. In this work, the ideal microstructure was obtained by heat treatment, but this process produces thermally induced porosity (TIP). After heat treatment, the fatigue strength of the bimodal Ti6Al4V alloy reached 680 MPa at 107 cycles, whereas the HIP Ti6Al4V alloy with a fully equiaxed microstructure was lower than 590 MPa. This is because the bimodal Ti6Al4V alloy has better resistance to fatigue crack initiation. This result confirmed that TIPs do not have a significant negative impact on fatigue properties. To further improve the fatigue performance, this study induced gradient nanostructured (GNS) in Ti6Al4V alloy by ultrasonic surface rolling process (USRP), and the fatigue strength of the USRP-treated specimen reached 750 MPa at 107 cycles. Combining microstructure observations and theoretical analysis, the surface hardening mechanism of the USRP-treated Ti6Al4V alloy was quantitatively described. The results showed that the plastic deformation layer is approximately 130 mu m, but grain boundary strengthening maintained its effect to a depth of about 200 mu m whilst dislocation strengthening maintained its effect to a depth of approximately 350 mu m. Under the comprehensive effect of surface hardening and compressive residual stress field, the fatigue crack initiation period of the USRP specimen was significantly extended. This may be the primary reason behind the enhanced fatigue performance obtained through USRP treatment. |
关键词 | HIP Ti6Al4V ELI Microstructure evolution Ultrasonic surface rolling process Surface hardening mechanism Fatigue enhancement mechanism |
资助者 | Natural Science Foundation of Guangdong Province, China ; Zhuhai industrial core research project |
DOI | 10.1016/j.msea.2023.146005 |
收录类别 | SCI |
语种 | 英语 |
资助项目 | Natural Science Foundation of Guangdong Province, China[2022A1515010023] ; Zhuhai industrial core research project[2220004002348] |
WOS研究方向 | Science & Technology - Other Topics ; Materials Science ; Metallurgy & Metallurgical Engineering |
WOS类目 | Nanoscience & Nanotechnology ; Materials Science, Multidisciplinary ; Metallurgy & Metallurgical Engineering |
WOS记录号 | WOS:001146681300001 |
出版者 | ELSEVIER SCIENCE SA |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://ir.imr.ac.cn/handle/321006/183796 |
专题 | 中国科学院金属研究所 |
通讯作者 | Qu, Shengguan |
作者单位 | 1.South China Univ Technol, Sch Mech & Automot Engn, Guangzhou 510640, Peoples R China 2.Natl Engn Res Ctr Near Net Shape Forming Met Mat, Guangzhou 510640, Peoples R China 3.Chinese Acad Sci, Inst Met Res, Shi Changxu Innovat Ctr Adv Mat, Shenyang 110016, Peoples R China |
推荐引用方式 GB/T 7714 | Sun, Pengfei,Qu, Shengguan,Duan, Chenfeng,et al. Strategy and mechanism to improve the fatigue properties of Ti6Al4V ELI alloy by microstructure modulation combined with surface strengthening process[J]. MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING,2024,892:15. |
APA | Sun, Pengfei.,Qu, Shengguan.,Duan, Chenfeng.,Zhong, Hao.,Li, Fenglei.,...&Zhang, Zhefeng.(2024).Strategy and mechanism to improve the fatigue properties of Ti6Al4V ELI alloy by microstructure modulation combined with surface strengthening process.MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING,892,15. |
MLA | Sun, Pengfei,et al."Strategy and mechanism to improve the fatigue properties of Ti6Al4V ELI alloy by microstructure modulation combined with surface strengthening process".MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING 892(2024):15. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论