IMR OpenIR
Toward super-clean bearing steel by a novel physical-data integrated design strategy
Guan, Jian1,2; Liu, Guolei1,3; Hu, Wenguang1,3; Liu, Hongwei1; Fu, Paixian1; Cao, Yanfei1; Liu, Dong-Rong2; Li, Dianzhong1
通讯作者Cao, Yanfei(yfcao10s@imr.ac.cn) ; Liu, Dong-Rong(dongrongliu@hrbust.edu.cn)
2025-02-01
发表期刊MATERIALS & DESIGN
ISSN0264-1275
卷号250页码:15
摘要The cleanliness of fabricated ingots is crucial for the quality and properties of bearing steel. To address this issue, a physical-data integrated design strategy was developed to optimize vacuum arc remelting (VAR) parameters, combining numerical simulation, machine learning (ML), and experimental validation. Initially, a multi-phase, multi-physics coupled model was developed to predict the movement and distribution of inclusions during the VAR process. Furthermore, five ML algorithms were utilized to predict the cleanliness assessment score (CAS) based on inclusion size and distribution data from various VAR processing parameters, with gradient boosting regression (GBR) showing the best performance. Finally, a systematic framework based on a genetic algorithm was proposed to select the optimal combination of CAS. Here, the ML-optimized processing parameters comprised current of 4255 A, helium pressure of 0.69 kPa, and melting rate of 2.5 kg/min. Intriguingly, the number density of small inclusions at the center of the ingot decreased by 58.2 % and that of large inclusions reduced by 13.3 %. This was mainly caused by the appropriate maximum flow velocity of 2.6-2.8 cm/s during the steady-state stage of the molten pool. This study highlights a common and novel method for fabricating bearing steel with other superalloys via a physical-data integrated strategy.
关键词Vacuum arc remelting (VAR) Inclusions Multi-phase model Genetic algorithm (GA) Physical-data integrated design strategy
资助者National Natural Science Foundation of China ; Strategic Priority Research Program of the Chinese Academy of Sciences
DOI10.1016/j.matdes.2025.113629
收录类别SCI
语种英语
资助项目National Natural Science Foundation of China[52471053] ; National Natural Science Foundation of China[52321001] ; Strategic Priority Research Program of the Chinese Academy of Sciences[XDA0410000]
WOS研究方向Materials Science
WOS类目Materials Science, Multidisciplinary
WOS记录号WOS:001403683700001
出版者ELSEVIER SCI LTD
引用统计
文献类型期刊论文
条目标识符http://ir.imr.ac.cn/handle/321006/180446
专题中国科学院金属研究所
通讯作者Cao, Yanfei; Liu, Dong-Rong
作者单位1.Chinese Acad Sci, Inst Met Res, Shenyang Natl Lab Mat Sci, 72 Wenhua Rd, Shenyang 110016, Peoples R China
2.Harbin Univ Sci & Technol, Sch Mat Sci & Chem Engn, 4 Linyuan Rd, Harbin 150040, Peoples R China
3.Univ Sci & Technol China, Sch Mat Sci & Engn, 96 JinZhai Rd, Hefei 230026, Peoples R China
推荐引用方式
GB/T 7714
Guan, Jian,Liu, Guolei,Hu, Wenguang,et al. Toward super-clean bearing steel by a novel physical-data integrated design strategy[J]. MATERIALS & DESIGN,2025,250:15.
APA Guan, Jian.,Liu, Guolei.,Hu, Wenguang.,Liu, Hongwei.,Fu, Paixian.,...&Li, Dianzhong.(2025).Toward super-clean bearing steel by a novel physical-data integrated design strategy.MATERIALS & DESIGN,250,15.
MLA Guan, Jian,et al."Toward super-clean bearing steel by a novel physical-data integrated design strategy".MATERIALS & DESIGN 250(2025):15.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Guan, Jian]的文章
[Liu, Guolei]的文章
[Hu, Wenguang]的文章
百度学术
百度学术中相似的文章
[Guan, Jian]的文章
[Liu, Guolei]的文章
[Hu, Wenguang]的文章
必应学术
必应学术中相似的文章
[Guan, Jian]的文章
[Liu, Guolei]的文章
[Hu, Wenguang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。