IMR OpenIR
梯度NiCoCrAlYSiB涂层的制备及腐蚀性能研究
其他题名Preparation of a gradient NiCoCrAlYSiB coating and the investigation on corrosion behaviors
鲍泽斌
学位类型博士
导师孙超
2008-12-06
学位授予单位中国科学院金属研究所
学位授予地点金属研究所
学位专业材料加工工程
关键词电弧离子镀 Nicocralysib Cvd 渗铝 梯度涂层 组织结构 盐雾腐蚀 等温氧化 循环氧化 热腐蚀
摘要本论文工作采用电弧离子镀技术(AIP)沉积NiCoCrAlYSiB涂层,并结合低压化学气相沉积(LP-CVD)的方法制备出了Al浓度呈梯度分布的梯度NiCoCrAlYSiB涂层。采用XRD、SEM (EDS)、XPS、EPMA和TEM等分析检测手段观察并分析涂层在各种腐蚀、氧化试验中的组织结构及其变化。主要研究内容包括: 采用电弧离子镀技术在Ni基定向凝固高温合金DZ125基材上沉积NiCoCrAlYSiB涂层,将沉积态涂层分别进行热处理,获得包括沉积态、真空退火态、预氧化态以及氧化态等四种NiCoCrAlYSiB涂层样品。对不同状态的涂层样品进行200 h中性盐雾腐蚀试验,结果表明:沉积态涂层的腐蚀程度相对较为明显,涂层内部出现了腐蚀孔洞和裂纹;真空退火态涂层表面也出现了明显的腐蚀产物,但其腐蚀速度较沉积态涂层慢一些;预氧化态和氧化态涂层在盐雾试验中表现出了良好的抗腐蚀能力,其抗腐蚀能力的提高主要得益于预处理过程中表面生成的连续致密的氧化铝膜。对于没有氧化膜保护的沉积态和退火态涂层,其盐雾腐蚀过程符合电化学腐蚀机理,表现出局部加速腐蚀和缝隙腐蚀特征。 将四种未经过盐雾试验的NiCoCrAlYSiB涂层和经过200 h盐雾试验的涂层进行1000 ℃恒温氧化对比试验,结果表明:盐雾腐蚀对后续高温氧化行为有着明显的影响,先前盐雾试验中腐蚀程度较重的沉积态和退火态涂层在后续氧化中增重明显,涂层内部出现了内氧化现象;预氧化态和氧化态涂层表现良好,它们的氧化增重与未经过盐雾腐蚀同状态涂层相差不多;预氧化态涂层和氧化态涂层在室温腐蚀及后续恒温氧化表现优异主要归因于前期预处理过程中表面生成的连续致密α-Al2O3膜。 分别采用电弧离子镀(AIP)共沉积以及电弧离子镀(AIP) + 低压化学气相沉积(LP-CVD)方法,制备出了Al梯度NiCoCrAlYSiB涂层。相比于共沉积法,LP-CVD气相渗铝工艺获得的涂层结构梯度效应更明显,优化后的气相渗铝工艺为:1000 ℃保温4~6 h,渗剂为96~98 wt.%的FeAl合金粉和2~4 wt.%的NH4Cl催化剂,CVD炉腔气压抽至低于100 Pa。该工艺属于以Ni向外扩散占优为特点的高温低活度渗铝,获得的Al梯度涂层分为三层:外层富铝,由单相的β-(Ni,Co)Al构成;中间层为过渡层,主要由富铝的β相和α-Cr构成;内层为γ/γ′加上大量弥散分布的β相;整个涂层中Al呈明显的梯度分布。TEM结果表明梯度涂层晶粒尺寸亦随深度方向由大至小呈梯度分布,并且在中间过渡层区域发现了极细小的Y3Al析出物,在一个α-Cr晶粒中观察到了层错的存在。 1100 ℃恒温氧化和1000 ℃循环氧化200 h的结果表明,梯度NiCoCrAlYSiB涂层的高温氧化性能明显好于普通涂层,200 h高温氧化后梯度涂层表面的氧化铝膜连续致密,而普通涂层表面生成的氧化产物为混合氧化物膜。梯度NiCoCrAlYSiB涂层抗高温氧化性能的提高主要归功于其表层大量存在的Al储存相 —— β,通过及时修补保护性的氧化铝膜,梯度涂层的使用寿命得以延长。梯度涂层在高温氧化中Al元素消耗引起的退化过程包括修补表面氧化膜所需以及与基材发生的元素互扩散,温度提高和采取冷热交替循环的氧化方式均可使涂层退化速度加快。 相比于普通NiCoCrAlYSiB涂层,由于梯度涂层表层富Al、中间层富Cr,它在热腐蚀中可以牺牲表层部分Al2O3来换取熔盐碱度的降低,使涂层可以在较长时间内一直处于腐蚀“孕育期”,200 h后不论在纯Na2SO4盐还是在Na2SO4/NaCl (75:25, w/w)混合盐中其表面仍由连续致密的α-Al2O3膜覆盖。特别在纯Na2SO4盐900 ℃的热腐蚀中,由于修补表面氧化铝膜所消耗的Al元素较少且900 ℃下元素扩散能力较1000 ℃时低,梯度NiCoCrAlYSiB涂层的梯度结构在200 h长期热腐蚀后仍得以保留,展示了其优异的抗热腐蚀能力。
其他摘要The thesis is focusing on corrosion behaviors of high-temperature protective MCrAlY coatings. Due to its superior advantage in forming dense and adherent protective oxide scales (i.e. Al2O3/Cr2O3), MCrAlY overlay coating series have been widely adopted for protections on hot components serving in aircraft engines and gas turbines. During services, no protective MCrAlY coating is able to be absolutely immune to harms induced by corrosions, of which the corrosion forms can be generally classified as room-temperature ambient corrosion, high-temperature oxidation and salt-induced hot corrosions. Thus, it is important and meaningful to investigate the corrosion behavior and mechanism for MCrAlYs, because the serving life of them depends greatly on the corrosion attacks. A NiCoCrAlYSiB coating was deposited onto a directionally solidified nickel-base superalloy DZ125 using arc ion plating (AIP) method. The analyzing approaches involve mass gain measuring, microstructure observing, phase identification, chemical composition detecting, which they were performed with the aid of high-precision optical balance, scanning electron microscopy (SEM) equipped with energy dispersive X-ray spectrum (EDS), transmission electron microscopy (TEM), electron probe micro- analyzer (EPMA), X-ray photoelectron spectrum (XPS) and X-ray diffractometer (XRD). According to the investigation purpose the NiCoCrAlYSiB coating specimens experienced different heat treatments, resulting in four types of samples of as-deposited, vacuum-annealed, pre-oxidized and short-term oxidized. Then they underwent identical salt spraying test for 200 h in a neutral NaCl solution mist, followed by an additional isothermal oxidation at 1000 ℃. The result shows a discriminated corrosion consequence to the four kinds of coating specimens, of which the as-deposited and as-annealed NiCoCrAlYSiB coatings suffered observable ambient corrosion and high-temperature oxidation while satisfactorily enhanced results were achieved for the pre-oxidized and the shortly oxidized. The good behavior of the pre-oxidized and oxidized coatings in both salt spray corrosion and subsequent high-temperature oxidation undoubtedly owes much to the dense and continuous alumina scale formed during previous heat treatments. It is confirmed that the pre-oxidized coating behaved even better than the oxidized because of its effectiveness in forming protective alumina scale. With the aim to fabricate MCrAlY coating accommodating more Al reservoir, an AIP co-deposition and a low-pressure chemical vapor deposition (LP-CVD) technique were employed. The CVD method proved the advantage over the co-deposition because the gas-phase aluminized coating was more homogeneous with true concentration grads. The optimized gas-phase aluminization craft is to maintain samples in a CVD chamber (below 100 Pa) at 1000 ℃ for 4-6 h with the reacting agents of 96-98 wt.% FeAl powder and 2-4 wt.% NH4Cl. The obtained Al-gradient coating has a multilayer structure: the Al-rich outer layer, the Cr-rich internal layer and the normal NiCoCrAlYSiB bottom layer with fine dispersions of β phase. There exists a grain size evolution from the top layer to the bottom. In the medium internal layer a Y3Al intermetallic and an α-Cr stacking fault were observed and characterized using high resolution electron microscopy. The gradient coating surpassed the normal NiCoCrAlYSiB in 1100 ℃ isothermal oxidation, 1000 ℃ cyclic oxidation and 900 ℃ hot corrosions in both pure Na2SO4 salt and the Na2SO4/NaCl (75:25, w/w) mixture. Since it accommodates much more Al reservoir, the gradient NiCoCrAlYSiB coating can easily sustain the fixing and repairing process for the α-Al2O3 scale. However, the normal NiCoCrAlYSiB suffered unsatisfactory consequence in the mentioned oxidations because it lacks helpful Al after long-time exposures. Similar results happened to the hot corrosions in the two kinds of salts, which the gradient coating maintained a continuous α-Al2O3 scale at last in contrast to the disastrous result for the normal NiCoCrAlYSiB. Especially, the structural grad of the gradient NiCoCrAlYSiB coating was reserved after 200 h hot corrosion in pure Na2SO4 because of the less corrosive feature of pure Na2SO4 and that the hot corrosion temperature is lower than aluminization at 1000 ℃. By this way, the gradient NiCoCrAlYSiB takes the advantages in forming and repairing α-Al2O3 scale in all types of high temperature behaviors, resulting in an extended long-term service life for itself. A sacrificed fluxing mechanism is able to describe the hot corrosion behaviors of MCrAlY coatings. The MCrAlYs utilize their beneficial element Al to resist harms induced by hot corrosions at some costs. The basic fluxing of Al2O3 brings two sides of impact: the destruction of the alumina scale and the reduction of alkalinity. Then if the Al content at the surface layer is high enough, the selective oxidation of Al2O3 can take place near the fluxing area. That is to say, by sacrificing some Al2O3 (or Al) a MCrAlY coating can obtain extended service life in return as long as it contains high levels of Al reservoir. The gradient coating is one of them.
页数157
语种中文
文献类型学位论文
条目标识符http://ir.imr.ac.cn/handle/321006/17120
专题中国科学院金属研究所
推荐引用方式
GB/T 7714
鲍泽斌. 梯度NiCoCrAlYSiB涂层的制备及腐蚀性能研究[D]. 金属研究所. 中国科学院金属研究所,2008.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[鲍泽斌]的文章
百度学术
百度学术中相似的文章
[鲍泽斌]的文章
必应学术
必应学术中相似的文章
[鲍泽斌]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。