IMR OpenIR
合金元素对经济耐候钢大气腐蚀协同抑制作用
其他题名Synergistic Effect of Alloying Elements on the Resistance to Atmospheric Corrosion of Cost Effective Weathering Steel
陈新华
学位类型博士
导师韩恩厚
2007-02-05
学位授予单位中国科学院金属研究所
学位授予地点金属研究所
学位专业材料学
关键词经济耐候钢 大气腐蚀 协同作用 锈层 合金化 电化学阻抗谱 干湿交替腐蚀
摘要由于表面的锈层具有良好的保护性,耐候钢越来越广泛地应用于铁道车辆、集装箱、汽车、建筑和电力塔架等领域。传统耐候钢因采用Ni、Ti等合金元素而使其价格偏高,限制了其广泛使用,开发低成本经济耐候钢已成为研究的热点。迄今为止,耐候钢的研究仍集中在单一合金元素的分布、存在形式及其作用机制上,而对两个及两个以上合金元素的协同作用少有报道;因此研究廉价合金元素的协同作用及利用合金元素的协同耐蚀作用来开发经济耐候钢意义重大。 本文利用合金元素Mn和Cu对改善钢的抗大气腐蚀性能的协同作用,系统研究了Mn、Cu含量及环境体系对协同作用的影响。利用电化学测试、扫描电镜、XRD、EDX等表面分析技术对带锈电极的腐蚀行为、锈层组成、结构和性质,以及Mn、Cu在钢中的含量、分布和存在形式对钢组织的影响进行了深入分析,阐述了Mn-Cu合金化协同作用的机制。利用Mn-Cu合金化的协同作用,成功开发出Mn-Cu型经济耐候钢并实现了工业化生产。 干湿交替加速腐蚀实验(CCT)评价结果显示:Mn-Cu耐候钢在模拟海洋/海岸大气环境和工业大气环境中均有优异的耐候性,Mn-Cu合金化的协同耐蚀作用显著,但最佳的Mn、Cu协同作用含量范围在两种大气环境中有所不同。在模拟海洋大气环境中的电化学测试结果表明:腐蚀初期Mn-Cu合金化协同抑制钢的阳极溶解和提高钢的自腐蚀电位;锈层形成后,Mn-Cu合金化协同抑制钢的阳极溶解和促进阴极还原。SEM、EDX和XRD结果说明:Mn-Cu协同抑制β-FeOOH的生成、促使锈的非晶化和更多γ-FeOOH、Fe3O4的生成来改善锈的组成,以及在干湿交替过程中在基体/锈层界面附近形成富尖晶石型氧化物CuMn2O4的内锈层来综合改进锈层的结构和离子选择性;锈层是阳离子选择性的,能有效阻隔腐蚀性Cl-的传质和渗透,从而更有效地保护钢基体。在模拟工业大气环境中,钢主要发生均匀腐蚀,Mn、Cu合金元素对钢腐蚀行为的影响与海洋环境相似。 含Cu钢的热处理显示:在0.1%~0.5%Cu范围里没有明显的Cu偏析,钢的组织主要是铁素体和珠光体,Cu在珠光体中的含量大于其在铁素体和晶界的含量,并且珠光体含量随Cu、Mn、Si含量的增加而增加。Cu的加入可以改变MnS的分布和形态。兼顾经济合理原则,钢的退火温度应控制在1100~1200℃之间,Cu含量应控制在0.2%~0.4%之间。 对比腐蚀实验表明:热轧Mn-Cu钢仍具有良好的耐候性,其耐候性略优于传统的09CuPTiRE和SPA-H耐候钢。热轧Mn-Cu钢的耐候性随着钢晶粒度的增加而略有增加。Mn元素在热轧Mn-Cu钢锈层中可能以MnFe2O4或者CuMn2O4存在。热轧Mn-Cu钢母材和焊接件的力学性能均优于同级别的16Mn钢,综合机械性能优良。 本文还探讨了Al-Si和Cu-Ni合金化对钢腐蚀行为的影响,旨在探索开发其它合金体系耐候钢的可能性。在模拟海洋环境中的CCT评价显示:Al、Al-Si合金化均能提高钢的耐候性,Al-Si合金化具有协同耐蚀作用;腐蚀初期,Al-Si合金化主要提高钢的自腐蚀电位;锈层形成后,Al-Si合金化协同抑制阳极溶解和阴极还原;SEM、EDX和XRD分析结果显示:Al-Si钢主要通过在界面区形成一薄层具有高阻隔性的致密氧化物层(富含尖晶石型FeAl2O4、单质Si或者富Si化合物),来协同抑制外部的腐蚀介质和水份向钢基体/锈界面供给,从而降低钢的持续腐蚀;Al-Si合金化并不能有效提高锈层的阻隔性,Al-Si钢表面锈层是阴离子选择性的。含Al、Al-Si钢在模拟工业大气环境中的腐蚀机制不同于海洋大气环境:在腐蚀初期,酸的再生循环加速钢的腐蚀;锈层形成后,因Al无法形成稳定的氧化物而溶解,促使锈层粉化、脱离,锈层保护性差,故不适宜采用Al及Al-Si合金化来提高钢在工业大气环境中的耐候性。 单独添加Ni和复合添加Cu-Ni既能提高钢在海洋性大气环境的耐候性,又能提高钢在含SO2的工业大气环境中的耐候性;Cu-Ni合金化对提高钢的抗大气腐蚀性能具有明显的协同作用,钢的耐蚀性均随Ni含量的增加而增强。对含Cu钢,当钢中Ni含量为4%时,Cu-Ni具有稳定、持久的协同耐蚀作用。在模拟海洋性大气环境中,电化学测试结果显示:在腐蚀初期,Cu-Ni合金化不仅抑制钢的阳极溶解和阴极还原,而且显著提升钢的自腐蚀电位。SEM,EDX和XRD分析结果表明:Cu-Ni合金化协同促进锈的非晶化和富反尖晶石型NiFe2O4锈层的形成来改善锈层结构和改进锈层的离子选择性,使锈层具有良好的物理阻隔性。在工业大气环境下,复合添加Cu-Ni仍能改进锈层的组成和结构。
其他摘要The excellent anti-corrosion property of weathering steel comes from an adherent and protective rust layer formed on its surface after long-term atmospheric exposure. The weathering steel is widely used in rail, truck, container, automobile, steel structure and towers for electric power, etc. Traditional weathering steels are alloyed with some expensive alloying elements, such as Ni and Ti, which increases the cost of weathering steels and hence limits their application. So relevant research concerning cost effective weathering steel has been soaring in recent years. Up to now, previous researches on weathering steel mainly are focused on the distribution of single alloying element, the effect of atmospheric conditions on the corrosion behavior and possible anti-corrosion mechanism of single alloying element. There are few investigations of the interaction of two or more alloying elements in weathering steel. Therefore, it is of great importance to investigate the interaction of cheap alloying elements and develop new cost effective weathering steel. Synergistic effect of Mn and Cu alloying elements on the atmospheric corrosion resistance presented in this study is the first report in weathering steel field. The relationship among the contents of Mn and Cu, atmospheric environments and the synergistic effect of Mn-Cu-alloying were investigated systematically by wet/dry cyclic accelerated corrosion test. In order to elucidate the anti-corrosion mechanism of Mn-Cu-alloying and provide some useful information for the development of new cost effective weathering steel, the corrosion performance of rusted specimens, rust composition, the structure and property of rust layer were analyzed by some material analytical techniques, such as electrochemical measurement, SEM, XRD, EDX, XPS, and so on. Based on the synergistic anti-corrosion effect of Mn and Cu, a kind of Mn-Cu-alloying cost effective weathering steel was developed and produced by two steel companies successfully. Mn-Cu-alloying improves the corrosion resistance of steels both in industrial and oceanic atmospheric environments synergistically. Cu-alloying can improve the corrosion resistance of steels to certain content, while Mn-alloying reduces the corrosion resistance of steels. At the initial stage of corrosion in a sodium chloride solution, Mn-alloying accelerates the dissolution of the anode, while both Cu-alloying and Mn-Cu-alloying retard the anode dissolution and improve the rest potential of steel. After rust layers formed on steels, Mn-Cu-alloying synergistically suppresses the anode dissolution and accelerates the cathode reduction. The analyses show that Mn-Cu-alloying retards the crystallization of rust, suppresses the growth of rust phases, and accelerates the formation of an inner rust layer enriching inverse spinel oxides like Fe3O4, which improves the protection and the adhesion of the rust layer on Mn-Cu-alloying steel. Under simulated industrial atmosphere environment, all steels are corroded uniformly. And the effect of Mn-/Cu-alloying on the corrosion performance of steels is similar to that in simulated oceanic atmospheric condition. No obvious Cu segregation is observed in all Cu-bearing steels when Cu content is between 0.1~0.5%. The microstructures of all Cu-bearing steels are composed by ferrite and pearlite. The concentration of Cu in pearlite is higher than that in ferrite and that at the grain boundaries. With increasing Cu, Mn and Si contents in steels, the volume fraction of pearlite increases. The addition of Cu also modifies the distribution and the shape of MnS inclusions. Based on the cost effective and practical principles, the optimal annealing temperature between 1100~1200 C and the optimal Cu content between 0.2~0.4% are determined. In practical contrast corrosion tests, rolled Mn-Cu-alloying steel also shows excellent corrosion resistance. Its anti-corrosion property is slightly better than those of traditional 09CuPTiRE and of SPA-H weathering steels. It is also found that the corrosion resistance of rolled Mn-Cu-alloying steel slightly increases with deceasing grain size of steels. The results of XPS indicate that Mn exists as MnFe2O4 or CuMn2O4 in rust for rolled Mn-Cu-alloying steel. The mechanical properties of rolled Mn-Cu-alloying steel and of its weld joints are slightly better than that of 16Mn steel. The anti-corrosion mechanism of single alloying element and the interaction in Al-Si-alloying and Cu-Ni-alloying were also investigated. Under Cl--rich wet/dry cyclic environment, Al-Si-alloying facilitates the formation of a dense oxide film near the substrate/rust interface, which enriches fine spinel oxide (FeAl2O4), Si or Si-rich compound; this kind of film has highly protective property. Al-Si-alloying can not enhance the density and stability of rust layer remarkably. In a NaHSO3 solution (pH~4), the recycle of acid accelerates the corrosion of steels at the initial stage. After rust layers formed on the steels, the leak of rust destabilizes the rust layer due to the dissolution of Al. Al-alloying or Al-Si-alloying is hence not suitable for improving the anti-industrial atmospheric corrosion of steels. Ni-alloying and Cu-Ni-alloying can improve the corrosion resistance of steels both in salty atmosphere and industrial environment containing SO2. The atmospheric corrosion resistance increases with increasing Ni and/or Cu contents in steels. For the steel containing Cu, the synergistic anti-corrosion of Cu-Ni-alloying is excellent, persistent and stable if the content of Ni is above 4%. Ni-alloying mainly suppresses the anode dissolution, but it hardly affects on the cathode reduction. Cu-Ni-alloying not only suppresses the anode dissolution and the cathode reduction, but also remarkably improves the rest potential of steels. Furthermore, Cu-Ni-alloying refines the rust, retards the crystallization of rust, and leads the formation of fine inverse spinel oxide (Ni2FeO4) and the transformation of γ-FeOOH under salt-rich environment, which improves the ion-selectivity of the rust layer and other properties. The rust layer on 0.3%Cu-4%Ni-alloying steel is cation selectivity. In industrial atmospheric environment, Cu-Ni-alloying also affects the rust composition and refines its structure, leading to an enhanced corrosion resistance.
页数170
语种中文
文献类型学位论文
条目标识符http://ir.imr.ac.cn/handle/321006/16993
专题中国科学院金属研究所
推荐引用方式
GB/T 7714
陈新华. 合金元素对经济耐候钢大气腐蚀协同抑制作用[D]. 金属研究所. 中国科学院金属研究所,2007.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[陈新华]的文章
百度学术
百度学术中相似的文章
[陈新华]的文章
必应学术
必应学术中相似的文章
[陈新华]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。