IMR OpenIR
Machine Learning Derived Blueprint for Rational Design of the Effective Single-Atom Cathode Catalyst of the Lithium-Sulfur Battery
Lian, Zan1,2; Yang, Min1,2; Jan, Faheem1,2; Li, Bo1,2
通讯作者Li, Bo(boli@imr.ac.cn)
2021-07-29
发表期刊JOURNAL OF PHYSICAL CHEMISTRY LETTERS
ISSN1948-7185
卷号12期号:29页码:7053-7059
摘要The "shuttle effect" and sluggish kinetics at cathode significantly hinder the further improvements of the lithium-sulfur (Li- s) battery, a candidate of next generation energy storage technolo Herein, machine learning based on high-throughput density functional theory calculations is employed to establish the pattern of polysulfides adsorption and screen the supported single-atom catalyst (SAC). The adsorptions are classified as two categories which successfully distinguish S-S bond breaking from the others. Moreover, a general trend of polysulfides adsorption was established regarding of both kind of metal and the nitrogen configurations on support. The regression model has a mean absolute error of 0.14 eV which exhibited a faithful predictive ability. Based on adsorption energy of soluble polysulfides and overpotential, the most promising SAC was proposed, and a volcano curve was found. In the end, a reactivity map is supplied to guide SAC design of the Li-S battery.
资助者National Natural Science Foundation of China ; Joint Research Fund Liaoning-Shenyang National Laboratory for Materials Science ; State Key Laboratory of Catalytic Materials and Reaction Engineering (RIPP) ; Special Program for Applied Research on Super Computation of the NSFC Guangdong Joint Fund (the second phase)
DOI10.1021/acs.jpclett.1c00927
收录类别SCI
语种英语
资助项目National Natural Science Foundation of China[21573255] ; Joint Research Fund Liaoning-Shenyang National Laboratory for Materials Science ; State Key Laboratory of Catalytic Materials and Reaction Engineering (RIPP) ; Special Program for Applied Research on Super Computation of the NSFC Guangdong Joint Fund (the second phase)[U1501501]
WOS研究方向Chemistry ; Science & Technology - Other Topics ; Materials Science ; Physics
WOS类目Chemistry, Physical ; Nanoscience & Nanotechnology ; Materials Science, Multidisciplinary ; Physics, Atomic, Molecular & Chemical
WOS记录号WOS:000680449800044
出版者AMER CHEMICAL SOC
引用统计
被引频次:33[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.imr.ac.cn/handle/321006/159564
专题中国科学院金属研究所
通讯作者Li, Bo
作者单位1.Chinese Acad Sci, Inst Met Res, Shenyang Natl Lab Mat Sci, Shenyang 110016, Liaoning, Peoples R China
2.Univ Sci & Technol China, Sch Mat Sci & Engn, Shenyang 110016, Liaoning, Peoples R China
推荐引用方式
GB/T 7714
Lian, Zan,Yang, Min,Jan, Faheem,et al. Machine Learning Derived Blueprint for Rational Design of the Effective Single-Atom Cathode Catalyst of the Lithium-Sulfur Battery[J]. JOURNAL OF PHYSICAL CHEMISTRY LETTERS,2021,12(29):7053-7059.
APA Lian, Zan,Yang, Min,Jan, Faheem,&Li, Bo.(2021).Machine Learning Derived Blueprint for Rational Design of the Effective Single-Atom Cathode Catalyst of the Lithium-Sulfur Battery.JOURNAL OF PHYSICAL CHEMISTRY LETTERS,12(29),7053-7059.
MLA Lian, Zan,et al."Machine Learning Derived Blueprint for Rational Design of the Effective Single-Atom Cathode Catalyst of the Lithium-Sulfur Battery".JOURNAL OF PHYSICAL CHEMISTRY LETTERS 12.29(2021):7053-7059.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Lian, Zan]的文章
[Yang, Min]的文章
[Jan, Faheem]的文章
百度学术
百度学术中相似的文章
[Lian, Zan]的文章
[Yang, Min]的文章
[Jan, Faheem]的文章
必应学术
必应学术中相似的文章
[Lian, Zan]的文章
[Yang, Min]的文章
[Jan, Faheem]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。